首页> 外文OA文献 >Exact Bayes’ theorem based probabilistic data association for iterative MIMO detection and decoding
【2h】

Exact Bayes’ theorem based probabilistic data association for iterative MIMO detection and decoding

机译:基于精确贝叶斯定理的迭代mImO检测和解码概率数据关联

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In our previous work, it was shown that the conventional approximate Bayes' theorem based probabilistic data association (PDA) algorithms output "nominal APPs", which are unsuitable for the classic architecture of iterative detection and decoding (IDD) aided receivers. To circumvent this predicament, in this paper we propose an exact Bayes' theorem based logarithmic domain PDA (EB-Log-PDA) method, whose output has similar characteristics to the true APPs, and hence it is readily applicable to the classic IDD architecture of multiple-input multiple-output (MIMO) systems using -ary modulation. Furthermore, we demonstrate that introducing inner iterations into EB-Log-PDA, which is common practice in conventional-PDA aided uncoded MIMO systems, would actually degrade the IDD receiver's performance, despite significantly increasing the overall computational complexity of the IDD receiver. Finally, we show that the EB-Log-PDA based IDD scheme operating without any inner PDA iterations has a similar performance to that of the optimal maximum a posteriori (MAP) detector based IDD receiver, while imposing a significantly lower computational complexity in the scenarios considered.
机译:在我们之前的工作中,已经表明,基于常规近似贝叶斯定理的概率数据关联(PDA)算法输出“标称APP”,这不适合经典的迭代检测和解码(IDD)辅助接收器体系结构。为了避免这种困境,在本文中,我们提出了一种基于贝叶斯定理的精确对数域PDA(EB-Log-PDA)方法,其输出具有与真实APP相似的特性,因此很容易应用于经典的IDD体系结构。使用-ary调制的多输入多输出(MIMO)系统。此外,我们证明,在传统PDA辅助的未编码MIMO系统中,将内部迭代引入EB-Log-PDA是很常见的做法,尽管大大增加了IDD接收器的整体计算复杂度,但实际上会降低IDD接收器的性能。最后,我们表明,无需任何内部PDA迭代即可运行的基于EB-Log-PDA的IDD方案的性能与基于后验(MAP)检测器的最佳最大值的IDD接收器的性能相似,同时在方案中实现了较低的计算复杂性考虑过的。

著录项

  • 作者

    Yang, Shaoshi; Hanzo, Lajos;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号